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Abstract. This research investigates an evolutionary approach to engineering agent 
collectives that accomplish tasks cooperatively. In general, reproduction and selec-
tion form the two cornerstones of evolution and in this paper we study various re-
production schemes in an evolving population of agents. We classify reproduction 
schemes in temporal and spatial terms, that is, by distinguishing when and where 
agents reproduce. In terms of the temporal dimension, we tested schemes where 
agents reproduce only at the end of their lifetime or multiple times during their life-
time. In terms of the spatial dimension we distinguished locally restricted reproduc-
tion (agents reproduce only with agents in adjacent positions) and panmictic repro-
duction (when an agent can reproduce with any other in the environment). This clas-
sification leads to four different reproduction schemes, which we compare, via their 
overall impact upon collective performance. Results using two completely different 
types of evolvable controllers (hand-coded or neural-net based) indicate that utiliz-
ing single reproduction at the end of an agent’s lifetime and locally restricted repro-
duction afforded the agent collective a significantly higher level of performance in 
its cooperative task. 

1   Introduction 

The research theme of this paper is described by the term: Emergent Collective Intel-
ligence (ECI). The end goal of ECI research is to combine and exceed achievements 
in multi-agent systems [1], swarm intelligence [2], and evolutionary computation [14] 
research via developing synthetic methodologies such that groups of computationally 
complex agents produce desired emergent collective behaviors resulting from the 
bottom-up development of certain individual properties and social interactions. This 
paper investigates certain technical aspects of artificial evolution as means of achiev-
ing adaptability at the local level and desired emergent behavior at the global level. 
     In many multi-agent tasks, such as those common to multi-robot systems, the cor-
rect input-output mappings for the agents’ controllers are not known in advance so it 
is not possible to program or train them with supervised learning methods [3]. To 
solve this problem many researchers have used neuro-evolution [4] as a generalized 
methodology for adaptability in agent behavior. Many researchers have highlighted 



that neuro-evolution is most appropriately applied to complex problems that are nei-
ther effectively addressed via pure artificial evolution nor neural processing ap-
proaches [5], [6], [7]. For example, Gomez [8] devised the enforced sub-populations 
(ESP) neuro-evolution methodology that was used for deriving the correct input-
output mappings for the agents’ controllers in the learning of multi-agent control tasks 
[9] with small numbers of agents. ESP has been shown to work well for various dis-
crete-state applications such as the game Go, as well as the classical pole-balancing 
task [10]. Neuro-evolution approaches investigated in collective robotic systems such 
as RoboCup soccer [11], simulated pursuit-evasion tasks [12], and multi-agent com-
puter games [13] were only able to derive limited forms of cooperative behavior, and 
the behavior did not scale with the number of agents. 
     Our application domain is the gathering of renewable resources from an environ-
ment. This gathering task is divided into locating, retrieving, and transporting the 
resources in question. It is an essential assumption that this task is interfaced to the 
population of agents via fitness rewards that are given after delivering the resources to 
a given ‘home area’. Additionally, we distinguish resources with different values and 
postulate that gathering of higher value (more complex) resources necessitates a 
higher degree of cooperative behavior (more agents). The performance evaluation 
criterion for the agent collective as a whole is then the total value gathered coopera-
tively, measured at the final generation of the simulation. Clearly there are many par-
ticular applications fitting into this general description. One could think of collecting 
some renewable resources, for example: harvesting farming produce, or minesweep-
ing. We use the minesweeping example throughout this paper. That is, we consider the 
task of the agent collective to be the location, and extraction of different types of 
mines, and their transportation to the home area within a simulated mine field. The 
successful delivery of a mine to the home area is equated with a fitness reward and 
fitness rewards are proportional to the type and amount of mines gathered.  
     Our approach to developing successful agents for this task is evolutionary; in par-
ticular, we evolved agent controller parameter values.  Hence, we studied two differ-
ent types of agent controllers, one heuristic controller with evolvable parameters, and 
a neural net controller with the same set of evolvable parameters and evolvable con-
nection weights. The technical research goal of this paper was to compare the efficacy 
of different agent reproduction scheme settings for accomplishing the minesweeping 
task. We classified reproduction schemes in temporal and spatial terms, that is, by 
distinguishing when, with which agents a given agent reproduces. For the temporal 
dimension, the agent reproduction schemes we tested were termed: Single Reproduc-
tion at the End of the Agent’s Lifetime (SREL) and Multiple Reproductions During an 
Agent’s Lifetime (MRDL). For the spatial dimension, we distinguished locally re-
stricted reproduction (agents reproduce only with agents in adjacent positions) and 
panmictic reproduction (when agents reproduce with other agents located anywhere in 
the environment). This classification led to four different reproduction schemes, which 
we compared experimentally, using the collective performance of the population ac-
complishing its task as the basic measure.                                                          



2   Collective Behavior Design 

The experiments utilized a simulated minefield and an initial population of 1000 
agents, placed at random positions on a grid-cell environment with a 50 x 50 resolu-
tion. A maximum of four agents could occupy any given grid-cell within the environ-
ment. A home area spanning 4 x 4 grid-cells was randomly placed within the envi-
ronment. This home area was where gathered mines were taken. Gathering was the 
term applied to the process of locating, extracting, transporting, and delivering a mine 
to the home area. Within the simulated minefield there were three types of mines: type 
A, type B and type C. The different types of mines had differing values to reflect the 
difficulty (degree of cooperation) associated with gathering it.  The cost of gathering 
mines comprised two sub-costs: the cost of extracting a mine from its location in the 
environment, and the cost of transporting a mine to the home area.  The costs of ex-
tracting and transporting one unit of each of the three mine types are presented in 
table 1. The transport cost was applied per unit being transported, and per grid-cell 
traversed. Initially, a quantity of between 0 and 3 mines of each type were randomly 
initialized and placed within each grid-cell.  It is assumed that a long-term process of 
gathering and replenishment in a minefield is being simulated, where mines are con-
sidered a renewable resource, and each mine type is renewed at a rate of 3 per simula-
tion iteration.  That is, the simulation is of a long-term process of collective gathering 
behavior being evolved, whilst an unseen competitor renews gathered mines.  Addi-
tionally, it is assumed that an agent never triggered a mine to detonate. 
     In order to gather the different mine types a degree of cooperative behavior was 
necessitated. Cooperation was necessary when at least one agent was attempting to 
extract a given mine type, and the value of the prevalent agent controller parameter 
was too low for the agent to individually gather the mine. These prevalent agent con-
troller parameters were termed: Mine type A capacity, Mine type B capacity, Mine 
type C capacity and transport capacity, and provided an indication of the capability of 
an agent for gathering a particular mine type.  Specifically, to gather one unit of a 
particular mine type, the sum of the values of the capacity parameter for that mine 
type (for all agents simultaneously attempting to extract the mine) must exceed a given 
capacity threshold. These capacity thresholds are presented for each mine type in 
table 1. The task of each agent was to gather the highest possible value of mines dur-
ing the course of its lifetime. This task was interfaced to the agent collective by pro-
viding fitness rewards for gathered mines.  
     The fitness rewards for gathering one unit of the different mine types are presented 
in table 1.  The total value of mines that all agents gathered in cooperation with at 
least one other agent during the course of its lifetime was termed the value gathered 
cooperatively. Further to playing its conventional role in survivor selection, fitness 
was also used as a metaphor of energy (actions cost fitness).  An agent was able to 
move one grid-cell in any direction per simulation iteration at a cost of one unit of 
fitness.   
 
 
 
 



                                                           Capacity        Extraction    Transport     Fitness 
                                                          Threshold            Cost               Cost         Reward 
 

                         Mine type A                  300                     8                 0.04               20 
 

                         Mine type B                  150                     4                 0.02               10 
 

                         Mine type C                   75                      2                 0.01                5 
 

Table 1. The capacity thresholds, and the costs for extracting and transporting mines, as well as 
the fitness reward for gathering one unit of the different mine types. 
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Fig. 1. Evolvable and non-evolvable agent controller parameters. Fig. 2. Heuristics utilized by 
agents operating under the pure-evolution approach. AmA, AmB, and AmC denote the amount 
of mine type A, B and C, respectively, on a given grid-cell. Holding denotes the current amount 
of all mine types a given agent is currently transporting. CA, CB, CC and CT, denote the gath-
ering capacities for mine types A, B, and C, and the transport capacity, respectively.  

2.1   Pure-Evolution Approach 

For the evolution of agent controller parameter values, a standard evolutionary algo-
rithm was used [14]. When an agent initiated reproduction, the fittest partner (with the 
highest energy) of m potential partner agents was selected for reproduction. The popu-
lation initially contained 1000 individuals (agents), and the genotype of each agent 
was its set of gathering and transport capacities (evolvable parameters illustrated in 
figure 1). These parameter values directly influenced the heuristic agent lifetime be-
havior, though the behavioral heuristics (figure 2) remained static over the course of 
the evolutionary process. That is, once an agent had gathered as many mines as it 
could transport, it would begin transporting the mines back to the home area. During 
reproduction, agent controller heuristics (figure 2) were copied from parent to child, 
and the fitness inherited by a child was the average fitness of the two parent agents. 
Ninety percent of the inherited fitness was then subtracted from each parent’s fitness.  
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Fig. 3A. Neural network agent controller (neuro-evolution approach). Note that, sensory input 
neurons SI1 to SI6 , hidden layer neurons HL1 and HL2 , input weights IW1 through to IW31 , and 
output weights OW2 through to OW5 are not presented. B. Neuro-evolution approach.   

2.2   Neuro-Evolution Approach  

Figure 3A presents the feed-forward neural network agent controller operating under 
the neuro-evolution approach. Input-output weights connecting the hidden layer neu-
rons from sensory input neurons to motor output neurons were evolved over succes-
sive generations under the neuro-evolution process. Agent controller parameter values 
(the evolvable parameters illustrated in figure 1) were evolved over successive genera-
tions using a standard evolutionary algorithm [14]. Evolved parameter values were 
then used as part of the sensory input (figure 3A) of the next generation of agents. 
Thus, as with the pure-evolution approach, the initial population contained 1000 indi-
viduals (agents), where the genotype of each agent was the set of input-output weights 
for the hidden layer of the neural network controller (figure 3A), and the set of gather-
ing and transport parameters (figure 1).  Figure 3A presents the neural network con-
troller as having 8 sensory input nodes (SI0 through to SI7) to account for 8 surround-
ing grid-cells, 4 hidden layer nodes (HL0 through to HL3), and 2 motor output nodes 
(MO0 and MO1) to account for the x, y position that the agent moves to. As illustrated 
in figure 3A, each sensory input neuron (SI0 through to SI7) was comprised of a 9 
value input array.  The first four inputs of the array (I0, I1, I2, I3) correspond to: the 
number of agents observed on the given grid-cell, the value of mine type A, mine type 
B, and mine type C observed on the given grid-cell, respectively. The fifth value of the 
sensory input neuron (I4) was the expected value to be gathered cooperatively. The 
neural network operated via attempting to select actions that minimized error. Error 
was the difference between expected value to be gathered cooperatively at simulation 
time t, and actual value gathered cooperatively at simulation time t+1.  The final four 
values (I5, I6, I7, I8) were the mine types A, B, C and transport capacities of this agent.  
The evolvable aspects were the 40 input-output weights connecting hidden layer neu-
rons, and the gathering and transport capacities of the agent. 
      



 
 

Fig. 4. Neuron reproduction to produce a new child agent sub-population. Note that, only the 
input-weights of the first hidden layer neuron of parent 1 are presented. 
 
     In the neuro-evolution approach, as presented in figure 3B, individual neurons for 
neural network controllers were evolved as a result of being evaluated, and recom-
bined in a social context.  As illustrated in figure 3B, n individual controllers are ini-
tially derived by randomly selecting u neurons from each sub-population as the u 
neurons for the hidden-layers of n controllers. The genetic representation of each sub-
population neuron is a string of input and output weights for each hidden-layer neu-
ron. 
That is, the approach evolved partial solutions (neurons) that were recombined in 
novel ways so as to form complete solutions (a group of heterogeneous neural net-
works). Combinations of hidden layer neurons from two parent agents formed a child 
sub-population (16 neurons) from which a child network was derived (4 neurons for 
the hidden layer). Figure 4 presents the 10 input-output weights of each hidden layer 
neuron (w0 to w9). During reproduction, those in the first parent were recombined (via 
single-point crossover) and each weight mutated (0.05 probability) with hidden layer 
neurons in the second parent. This allowed for recombination and mutation of the 
hidden neuron input-output weights, and produced a new sub-population, from which 
the fittest 25% of neurons were selected as the hidden layer of a child network.   
     The key idea of this methodology was that over the course of multiple generations, 
cooperation occurs within the sub-populations themselves and competition between 
the n sub-populations so as to produce neural network controllers that operate effec-
tively at addressing both individual and social tasks. The key difference delineating 
this approach from other neuro-evolution methodologies (most notably: ESP [8]) is 
that it provides a separate sub-population of neurons for the derivation of each neural 
network. Also, after each evaluation, fitness is assigned to all neurons within a net-
work, and networks can reproduce with any other network in the population of net-
works.  The approach was split into several phases. In the initial phase, the first time 
the n neural network controllers are created, the genotype of each neuron (set of input-
output weights) is randomly initialized and u neurons are then randomly selected from 
each of the n sub-populations in order to form the hidden-layer of n neural network 
controller. The n neural network controllers are then evaluated in the mine sweeping 
task. Fitness values are awarded to each agent when a mine is delivered to the home 
area. This fitness is then equally distributed to each hidden-layer neuron participating 
in the agent’s neural network controller. 



2.3   Reproduction Schemes and Settings 

The experiments compared the four agent reproduction schemes, specifically, SREL 
and panmictic, SREL and locally restricted, MRDL and panmictic, as well as MRDL 
and locally restricted reproduction. Each of these schemes was tested and evaluated 
for a heuristic agent controller with evolvable parameters (operating under a pure-
evolution approach), and a neural network controller with evolvable parameters (oper-
ating under a neuro-evolution approach).   
     During the reproduction action, 90% of the fitness of two parent agents was di-
vided amongst and passed onto p offspring agents.  During reproduction only one 
partner agent of m potential partner agents was selected for reproduction. An agent’s 
fitness could only be replenished when it delivered a mine to the home area. The pre-
condition for locally restricted reproduction setting was that there was at least one 
potential partner agent in the same grid-cell or an adjacent grid-cell.  For either the 
locally restricted or panmictic settings, reproduction was only possible when both 
parents current fitness was greater than the value of the min fit reproduction parame-
ter. 
     When p offspring agents were produced using the panmictic reproduction setting, 
each offspring would be placed in a random free grid-cell adjacent to one of the par-
ents. The chance that an offspring an agent was placed in a grid-cell adjacent to parent 
1 was 0.5, and the chance that an offspring was placed in a grid-cell adjacent to parent 
2 was 0.5. If no adjacent grid cells were free, then the offspring agent died.  Using the 
locally restricted setting offspring agents were always placed in a random free grid-
cell adjacent to the parent agent that initiated reproduction.  The number of offspring 
to be produced was determined as m = the total amount of fitness to be inherited (x) 
divided by 10. According to the reproduction scheme setting being used, pairs of 
agents produced p offspring using the genetic operations of crossover and mutation 
[14]. For both the pure evolution and neuro-evolution approaches, the core of repro-
duction was the application of uniform crossover to ‘recombine’ the controller pa-
rameters: mine type A, B, C and transport capacities of two parent agents in order to 
derive the agent controller parameter values of a child agent. The uniform crossover 
operator selected a parameter value to be inherited from either parent agent with a 0.5 
probability. Child controller parameter values were mutated by a value of either plus 
or minus 10 with a probability of 0.05. If mutation occurred, the probability of adding 
versus subtracting 10 from the inherited parameter value was 0.5.   

3   Experiments, Results, and Discussion 

The four agent reproduction schemes were tested and evaluated under the pure-
evolution and neuro-evolution approaches. 100 independent runs (each executed for 
2000 iterations) were performed. For each of the four reproduction schemes operating 
under the pure-evolution and neuro-evolution approaches, a control experiment was 
performed. Each control experiment was non-evolutionary, using static values for the 
gathering and transport agent controller parameters. The static values utilized were 



those attained at the end of the evolutionary process (pure-evolution or neuro-
evolution) using a given reproduction scheme. The performance criterion for evolved 
agent collective behaviors was the total value of mines gathered cooperatively.  
     Table 2 presents the values gathered cooperatively attained for the four reproduc-
tion schemes, operating under the pure-evolution and neuro-evolution approaches.  
For each approach, the values attained in the control experiments are presented below 
the values gathered cooperatively. The value in parentheses presented next to each of 
the values gathered cooperatively is the standard deviation. A high standard deviation 
indicates that the agent collective was less stable in its gathering behavior. High stan-
dard deviations were the result of many agent populations (of the 100 replications) 
becoming extinct before the end of a simulation.  A low standard deviation indicates a 
low portion of agent populations dying out prematurely and hence a high stability in 
the gathering task. Here, the term stability indicates that, for the gathering and trans-
port parameter values evolved, a particular value gathered cooperatively (plus or mi-
nus some variance) was expected.  
     The control experiments demonstrated that both the pure-evolution and neuro-
evolution approaches (using the SREL and locally restricted reproduction scheme) 
were operating within a region of the parameter space (defined by the four agent con-
troller parameters) where a high value gathered cooperatively was attainable. This was 
especially the case for the neuro-evolution approach, which, when using the SREL and 
locally restricted, and SREL and panmictic reproduction schemes, was able to attain 
values gathered cooperatively over an order of a magnitude higher than comparative 
agent collectives. 
     Also, table 2 highlights that, agents using the SREL and panmictic reproduction 
scheme and operating under the neuro-evolution approach, were able to achieve a 
higher stability comparative to the other reproduction schemes.  This is theorized to be 
a result of the panmictic reproduction scheme that selects a partner agent from any-
where in the environment.  
     Under the neuro-evolution approach, panmictic reproduction encourages and pre-
serves the heterogeneity and diversity in the n sub-populations corresponding to the n 
agent controllers.  Locally restricted reproduction restricts the diversity produced in 
child sub-populations (hence agent controllers) by only selecting from agent sub-
populations local to the proximity of the reproducing agent.  
     Under the pure-evolution approach, all agent controllers are initialized with the 
same heuristics, and the agent controllers do not evolve over successive generations. 
This heterogeneity of controllers under the neuro-evolution approach, and the homo-
geneity of controllers under the pure-evolution approach, refers only to the structure 
of the agent controllers, and not to the evolvable parameters (as used in both ap-
proaches). 
     The result of the SREL and locally restricted agent reproduction scheme being 
most appropriate for both approaches (pure-evolution and neuro-evolution) is theo-
rized to be consequent of agents only reproducing at the end of their lifetimes. Using 
the SREL setting, agents that have performed their task well and have thus survived 
until the end of allotted lifetime, are allowed reproduce. Given that the reproduction 
action costs 90% of the parents’ energy, agents using the MRDL setting have less of a 
chance of producing offspring that are well suited to successful task accomplishment.  



                                       SREL                  SREL               MRDL              MRDL 
                                      Panmictic             Local               Panmictic           Local  

 

Neuro-Evolution        159.67 (12.96)      300.95 (46.56)     37.92 (7.75)     30.61 (4.90)  
 

Control                        610.23 (9.10)       870.67 (60.34)     92.91 (3.67)     68.50 (2.93)            
 

Evolution                     23.59 (33.37)       39.10 (17.20)      32.56 (10.00)    22.85 (17.60)           
 

Control                        60.25 (1.85)         71.70  (3.50)       43.04 (5.46)      54.28 (0.63) 
 
Table 2. The values attained for the total value gathered cooperatively (standard deviations in 
parentheses) under pure-evolution and neuro-evolution. Values attained in the control experi-
ments are presented under the respective approach and reproduction scheme setting used.  
 
This is especially the case for the neural-evolution approach, since neural network 
controller weights need sufficient time to change and produce an effective agent be-
havior, in order for that behavior to be propagated in the next generation of agents.  In 
the case of the heuristic controller, child agents inherit only recombined and mutated 
agent parameter values and an average of parent fitness. However, the nature of the 
SREL setting holds, in that only agents with appropriate controller parameter settings 
will have survived until the end of their allotted lifetime (that is, those agents with a 
high fitness).   

Hence, table 2 illustrates that for the pure-evolution and neuro-evolution ap-
proaches, the SREL and locally restricted reproduction scheme is the most appropriate 
for the given task.  It is theorized the superior performance of the neuro-evolution 
approach is a result of agent lifetime behavior adapting over successive generations, 
and no direct reliance upon controller parameter values. The heuristic behavior under 
the pure-evolution approach relies directly upon the values of the gathering and trans-
port capacities in order for an agent to decide where to move and what type of mine 
can be gathered.  
     Furthermore, as a benchmark to illustrate the efficacy of evolved agent controller 
parameter values, additional control experiments were run using the four reproduction 
schemes under the pure-evolution and neuro-evolution approaches. These control 
experiments utilized the maximum possible values (at initialization) for the gathering 
and transport parameters.  That is, 100, 100, 100, and 300 for the mine type A, B, C, 
and transport capacities respectively.  
     The resulting values gathered cooperatively (average taken over 100 runs) were 
always low with high standard deviations (comparative to values attained in other 
experiments) for collectives using the pure-evolution approach.  The low values and 
high standard deviations for each of the reproduction scheme settings operating under 
the pure-evolution approach indicate that all agent populations died prematurely.      
     Under the neuro-evolution approach, low values gathered cooperatively and high 
standard deviations were attained, indicative of few collectives (of the 100 replica-
tions) surviving until the final simulation iteration. This was a result of high values for 
the agent controller gathering and transport capacities (table 1) yielding correspond-
ingly high gathering and transport costs, where these costs usually exceeded an agent’s 
fitness. 



4   Conclusions 

This paper compared the efficacy of different agent reproduction scheme settings for 
accomplishing a cooperative gathering task. Results indicated that agent collectives 
utilizing the single reproduction at end of lifetime (SREL) and the locally restricted 
reproduction scheme yielded a superior performance in a collective gathering task. 
This agent reproduction scheme setting attained the highest performance in terms of 
the evaluation criterion for both a heuristic agent controller (operating under a pure-
evolution approach) and a neural network agent controller (operating under a neuro-
evolution approach).  The evaluation criterion was defined as the total value of re-
sources gathered cooperatively in a simulated environment within a given time period.   
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